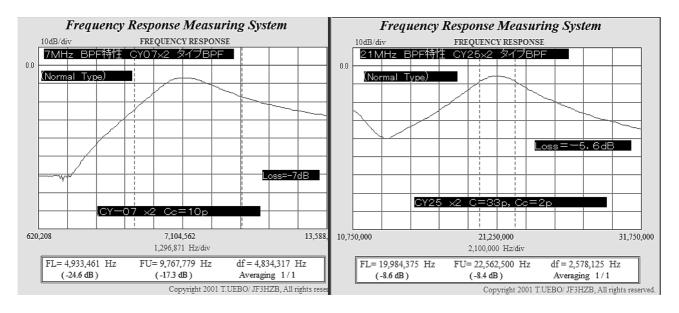
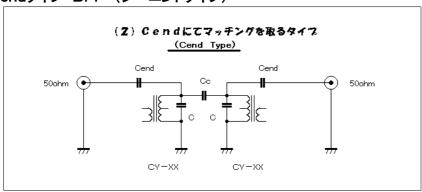

7Kコイルを使用したバンドパスフィルターの製作 7MHz/21MHz

CYTEC 2016/04

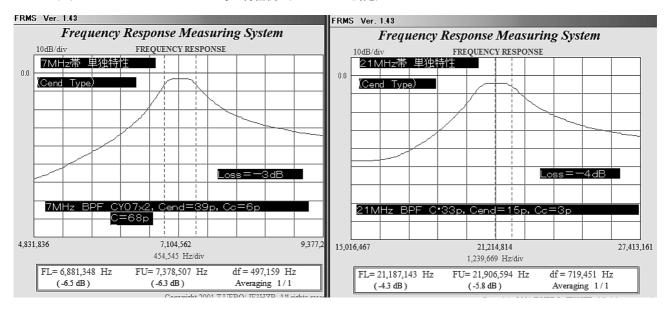
7Kタイプのコイルを使用した、バンドパスフィルター(以下、BPF)は、使用頻度が高い物です。一般的には、下記の(1)の形が多く使われています。今回は、7Kコイルのリンクコイルを使用しないで、マッチングを取る(2)の回路で、BPFを製作してみました。 実験した周波数は、現在、7MHz帯と21MHz帯の2バンドのみです。


1)リンクコイル・タイプ BPF

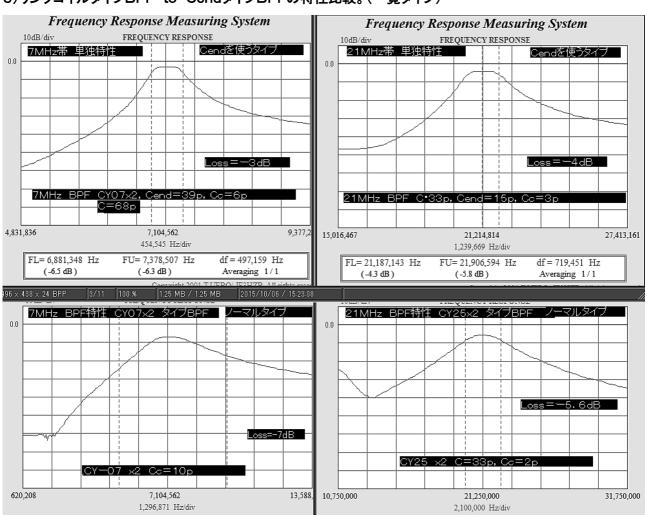

よく使われている、リンクコイルを入出力にした物です。 入出力に、50オームのような 低いインピーダンスをつなぐと コイルのQが下がり、BPFの 性が、悪くなります。

下記に、7MHzと21MHz時のBP 特性を、載せておきます。

*リンクコイルタイプのBPF 7MHzと21MHz時の特性例 (FRMSにて測定)



2) Cendタイプ BPF (シーエンドタイプ)



リンクコイルを、入出力に使わずマッチング回路により、50オームの入出力を、行います。これにより、コイルのQの低下が少くなり、通過帯域の特性が改善されます。BPFの通過損失も、低下します。

*CendタイプのBPF 7MHzと21MHz時の特性例 (FRMSにて測定)

3)リンクコイルタイプBPF to CendタイプBPFの特性比較。(一覧タイプ)

この様に、近傍の減衰特性が良くなり、通過帯域が平らになります。BPFに低いインピーダンスをつなぐ場合リンクコイルではなく、マッチングを取った方が良いです。

4) Cendタイプ・BPF 7MHz/21MHz時の、各定数

バンド(MHz)	Cend(pF)x2	Cc(pF)	7Kコイル	Cfix(pF)x2	Rem
7MHz	39	6	CY-07	68	
21MHz	15	3	CY-25	33	

注: CY-07 = CYTECのハムバンドコイル 7MHz用 CY-25 = CYTECのハムバンドコイル 21MHz用

5)他バンドへ応用するには。

他バンドの定数は、2ポールのBPFの計算式と、特性直視装置を使い求めます。 各バンドの定数決定は、今後の課題とします。時間を見ながら、定数を決めていきます。

CYTEC 2016/04